Фотон. Взаимопревращение вещества и энергии
Двойственный характер субатомных частиц является отражением взаимосвязи энергии и вещества, которую открыл немецкий физик-теоретик Альберт Эйнштейн (1879–1955) в начале 1900-х годов и выразил в знаменитой формуле Е=mс2.
Благодаря этому открытию стало известно, что вещество и энергия являются взаимопревращаемыми. Это значит, что можно преобразовать не только вещество в энергию, но и энергию в вещество. И хотя физики пока ещё опытным путём в лабораториях не доказали осуществимость таких превращений, но похожие явления уже наблюдаются при работе с экспериментальными ядерными установками. В этих установках высокоэнергетический фотон света космического луча, проходя вблизи тяжёлого атомного ядра, оставляет отпечаток на плёнке таким же образом, как если бы он спонтанно становился парой «частица – античастица». В этом случае фотон превращается в пару зеркальных частиц, то есть энергия становится веществом. Этот процесс противоположен тому, который происходит, когда вещество и антивещество при взаимодействии уничтожают друг друга, высвобождая огромное количество энергии.
Такое взаимное преобразование (света в вещество и наоборот) может показаться столь же невозможным, как, например, превращение яблок в апельсины и затем снова в яблоки. Однако, возможно, происходит не взаимное преобразование двух полностью различных субстанций, а явление, сходное с изменением агрегатного состояния вещества (как, например, вода превращается в твёрдый лед, а тот превращается в воду).
В момент превращения из света в вещество фотон (волновой пакет света) как бы замедляется и застывает. А учитывая, что атом состоит в основном из пустого пространства, это означает, что крошечные частицы, которые заполняют эту пустоту, на самом деле могут быть всего лишь застывшими фотонами света, а тогда на микрокосмическом уровне всё вещество представляет собой лишь застывший свет.
Однако свет, как изучаемый объект природы, остаётся одним из самых загадочных её феноменов.
Во времена Ньютона3 фотон несомненно считался материальным объектом. В этом случае материя рассматривалась как сущность, которая способна бесконечно делиться, а её основополагающим элементом являлась безразмерная вещественная точка. При этом точка была очень массивной, поскольку вся Вселенная сжимается в эту точку. И хотя корпускулярное представление о фотонах было опровергнуто волновыми опытами Юнга4, однако новую, волновую, концепцию разрабатывать не пришлось, потому что волновая теория вещественных сред уже существовала. Её и применили, без должной оглядки на то, что эфир (физический вакуум) явно не относится к вещественным средам.
Существовало несколько вариантов представлений о природе света: то в образе волны, то в образе частицы. В итоге же свет был признан потоком частиц с волновыми признаками или, наоборот, волновым потоком с корпускулярными признаками.
При этом волновая концепция фотонов могла быть опровергнута любым опытом, подтверждающим корпускулярность фотонов, и таких опытов было предостаточно. В результате был сделан вывод, что фотон не является ни волной, ни частицей, что он – это нечто особое.
Исключительность фотона проявляется кроме всего прочего в том, что фотон не подпадает под действие квантового принципа неопределённости Гейзенберга5. Обладая известной скоростью, фотон формально допускает неограниченную точность измерения своих координат.
В квантовом мире нет безразмерных объектов. Там нет места и локальным объектам с бесконечными параметрами. Любой материальный объект имеет конечный объём и другие конечные параметры. Зато каждый материальный объект имеет минимальный элемент (квант), из которых (квантов) объект и сформирован.
Фотон – это квантовый объект, описываемый шестимерной матрицей.
Матрица фотона шестимерная, потому что квантовое пространство предположительно имеет сотовую структуру, что и задаёт размерность этой матрицы, в которой реальностью является вращение всех квантовых конструкций вокруг шести координатных осей пространства.
Это вращение происходит последовательно вокруг каждой оси, но мы его воспринимаем как одновременное и только в одном направлении, которое и обозначаем как спин. Поэтому в науке наиболее полно описано такое частное свойство фотона, как поляризация.
Компилятивное определение понятия «квант» допускает как материальное, так и нематериальное представление кванта. Квантовый фотон – это локализованный объект, который не делится на составные части. При этом он не является и частью каких-либо устойчивых объектов или образований. Поэтому фотоны не образуют среду.
Фотон, несомненно, является унифицированным переносчиком квантованных порций энергии. Хотя фотон неделим, но переносимая им энергия может порционно изменяться в процессе его жизненного цикла, но не произвольно, а только в строго определённых ситуациях. Пока из таких ситуаций известна только одна: это зеркальные отражения фотонов, сопровождаемые эффектом Доплера6.
Однако фотон никак не вписывается в привычное представление о квантах, кроме одного: содержание энергии в нём меняется ступенчато. Энергия одной ступеньки и является фотонным квантом. Такой фотон имеет частоту в 1 Гц и длину волны в 300 000 км. Однако подобный фотон пока не обнаружен. И если в природе не существует фотонов с частотой 1 Гц, то какая же тогда минимальная частота фотона? Действующая квантовая модель не даёт на это ответа. Фотон не может формировать устойчивые фотонные объекты. А именно это свойство является основным и отличительным признаком частиц. Получается, что в природе не существует разновидностей фотонов.
Таким образом, уникальные свойства фотона не могут быть отнесены ни к волновым электромагнитным явлениям, ни к корпускулярным. Многие фотонные теории не могут считаться адекватным описанием реальных физических процессов. Но официальная наука считает, что фотоны способны генерироваться атомными ядрами, отдельными электронами и плазменными потоками. Таким образом, вопрос о квантовом стандарте конструкции фотона остаётся открытым и требует изучения.