(корень n-ой степени из а), которые иногда сводятся к целым числам или к сочетанию целого числа и дроби, но чаще всего оказываются так называемыми иррациональными величинами. Примером может служить √2 – это число невозможно привести в полной форме: 1,41421… так как для его точной записи потребуется бесконечная последовательность цифр. Класс подобных чисел называют «иррациональными»16. Можно утверждать, что √2 больше, чем 1,41421, но меньше, чем 1,41422. Можно ограничить это число интервалом любой длины, но нам никогда не найти его точного выражения. Даже если записать ряд чисел, содержащий в себе все дроби и указанные иррациональные величины, количество оставшихся неучтенными чисел по-прежнему будет бесконечным. Таково характерное свойство непрерывного пространства, или континуума. Принцип непрерывности чрезвычайно важен для дифференциального исчисления.
Используем концепцию непрерывности как аналогию того сознания, которое расположено выше черты (рис. 1). Здесь нет ничего отдельного, дискретного. Все, можно сказать, пребывает в текучем состоянии. Это свойство тесно связано с анализом движения, где не существует дискретных шагов, к которым можно было бы применить систему целых чисел. Те, кто знаком с математикой, несомненно, поймут меня намного лучше, но сейчас я обращаюсь исключительно к разуму. Ниже черты движение дискретно. В этом и заключается сущность сознания, его неотъемлемое свойство: я отличен от вас, я отличен от всего остального. Выше этой линии возникает ощущение подвижности любого элемента, непрерывного перетекания одного в другое. Я воспользуюсь символом бесконечности: