Диалектика мифа и волшебной сказки


Напомним, У(А, Г) обозначает прямое отношение, У-1(Г, А) – обратное отношение, S-инверсия – тождество противоположностей диалектического противоречия, Q-инверсия – их асимметрию, D-инверсия – диалектическое отрицание противоположностями У(А, Г) и У(Г, А) друг друга, необходимое для разрешения диалектического противоречия.

Результаты разрешения диалектического противоречия и тем самым итоги сказки вычисляются по формулам

(1) У(Г, А) ⊗ У(А, Г) = У2(Г, Г);

(2) У(A, Г) ⊗ У(Г, А) = У2(A, А),

которые читаются соответственно:

(1) Если положительный герой Г становится жертвой антагониста А и А – жертвой Г, то Г – свой собственный освободитель.

(2) Если антагонист А наносит ущерб герою Г, но Г ликвидирует этот ущерб, то А становится жертвой своих собственных вредительских действий.

Результаты разрешения диалектического противоречия (1) и (2) комплементарны и достаточно указать на любой один из них. Действительно, если положительный герой благодаря предпринятым действиям освобождает себя, т.е. перестает быть жертвой антагониста, то с такой же необходимостью антагонист превращается в жертву действий положительного героя. Обратное утверждение также верно.

Квадраты функций У2(A, А) и У-2(Г, Г) демонстрируют важную особенность итогов разрешения мифов и волшебных сказок – их рефлексивность, т.е. обратную направленность результатов разрешения диалектического противоречия на каждого из героев по правилам: «жертва, превратившая своего вредителя в собственную жертву, становится своим собственным освободителем» и «вредитель, порождающий своими действиями собственного врага, становится своим собственным вредителем». Обычно эти правила формулируются в начале или конце нарратива в виде его морали.

Как правило, положительный герой сказки не только восполняет нанесенный ему антагонистом ущерб, но и очень часто после физического или морального уничтожения антагониста приобретает дополнительные блага. Суммируя это замечание с вышеприведенными рассуждениями, получаем диалектическую формулу мифа, волшебной сказки и, по нашему предположению, всех остальных видов нарратива:

У(A, Г) : У1(Г, A) У(Г, A) : У2(A, A).      (5)

Левая часть формулы (5) (до знака ) символизирует пропорцию противоположностей диалектического противоречия, определяющего структуру и динамику нарратива. Правая часть формулы также сформулирована в виде пропорции и символизирует необходимое условие и результат разрешения диалектического противоречия (отношения У(Г, A) и У2(A, A) соответственно). Знак (меньше или равно) указывает на то, что результат разрешения диалектического противоречия всегда как минимум компенсирует положительному герою нанесенный ему в начале мифа или сказки ущерб.

Диалектический характер формулы (5) станет более наглядным, если с помощью стрелок символизировать направление трансформации ее элементов – от возникновения диалектического противоречия (пропорция отношений У(A, Г) и У1(Г, A)) до его разрешения (пропорция отношений У(Г, A) : У2(A, A)). В этом случае становится более понятным утверждение, что формула (5) имеет вид раскручивающейся спирали (возрастания степени исходного отношения), один виток которой соответствует ровно одному циклу возникновения и разрешения диалектического противоречия (рис. 2).


Поделиться

Добавить комментарий

Прокрутить вверх