где фон светлый, и, менее вероятно, там, где фон темный. Очень важный момент - то, что весь паттерн соответствует одному электрону в данный момент. Внутри паттерна мы не можем указать конкретное местонахождение электрона, мы можем лишь с какойто вероятностью указать область его пребывания. На языке формальной математики эти тенденции, или вероятности, выражаются вероятностной функцией - математической величиной, характеризующей вероятности местонахождения электрона в разных точках в разное время.
Контраст между двумя типами описания - классические термины для подготовки эксперимента и вероятностные функции для наблюдаемых объектов - приводит к серьезным метафизическим проблемам, которые до сих пор остаются нерешенными. Тем не менее, на практике эти проблемы попросту обходят, описывая наблюдающую систему в операциональных терминах, то есть в терминах предписаний, позволяющих ученым подготовить и провести эксперимент. Благодаря этому измерительные приборы и сами ученые представляют собой единую комплексную систему, которая не делится на самостоятельные, четко определенные части. Поэтому не нужно описывать экспериментальное оборудование как систему самостоятельной физической природы.
Для дальнейшего описания процесса наблюдения мы приведем конкретный пример с простейшей физической единицей - субатомной частицей, такой, как электрон. Если мы задались целью наблюдать и измерять такую частицу, нам сначала придется ее изолировать или даже создать в процессе того, что называется подготовкой эксперимента. После того, как частица готова для наблюдения, можно измерить ее характеристики, и в этом состоит процесс измерения. Можно символически описать ситуацию следующим образом. Частицу А готовят в точке А, затем она перемещается из А в В и подвергается измерениям в точке В. На практике и подготовка. и измерение частицы могут представлять собой целый ряд довольно сложных процессов. Так, например, в физике высоких энергий при подготовке столкновений частиц частицы-снаряды разгоняются, вновь и вновь двигаясь по круговой дорожке, до тех пор, пока их энергия не возрастет до нужного уровня. Этот процесс происходит в ускорителе частиц. Когда необходимое количество энергии приобретено, частицы покидают ускоритель (А) и перемещаются в район мишени (В), где сталкиваются с другими частицами. Столкновения происходят в пузырьковой камере: частицы оставляют видимые следы, которые потом фотографируются. Подвергая математическому анализу следы частиц, ученые могут говорить о свойствах частиц; при этом часто используют компьютеры: анализ очень сложен. Все эти процессы составляют акт измерения.
Важным моментом является то, что частица - это промежуточная система между процессами в точках А и В. Она существует и имеет смысл только в этом контексте - не как самостоятельная единица, а как промежуточное звено между процессами подготовки и измерения. Свойства частицы нельзя определить независимо от этих процессов. Если в подготовку эксперимента вносятся изменения, свойства частицы тоже изменяются.
С другой стороны, если мы говорим о частице или какой либо другой наблюдаемой системе, мы, очевидно, подразумеваем, что существует некоторая самостоятельная единица, которую сначала подготавливают, а потом измеряют. Основная проблема наблюдения в атомной физике, по словам Генри Стаппа, заключается в том, что наблюдаемая система должна быть изолированной, чтобы ее можно было определить, и, в то же время, взаимодействующей для того, чтобы ее можно было наблюдать [70, 1303]. Квантовая теория решает эту проблему прагматическим образом, выдвигая требование, которое заключается в том, что наблюдаемая система должна быть свободна от внешних воздействий, вызванных процессом наблюдения, на протяжении определенного периода времени между подготовкой и последующим измерением. Это возможно в том случае, если подготавливающие и измеряющие приспособления находятся на большом физическом удалении, так что наблюдаемый объект может переместиться из точки подготовки в точку измерения.
Насколько же большим должно быть пространство между приборами и объектом? В принципе, оно должно быть бесконечно большим. В рамках квантовой теории, понятие самостоятельной физической единицы четко определено только при том условии, что эта единица достаточно удалена от средств наблюдения. На практике это невозможно, да и не нужно. Здесь нам следует не забывать об основном принципе современной науки - принципа относительности всех понятий и теории. В данном случае это означает, что понятие