нет. Далее, одни противопоставляют единому разное и иное, другие - множество. Но если, как они этого хотят, существующее составляется из противоположностей, а единому или ничто не противоположно, или, раз уж так необходимо, противоположно множество, неравное же - равному, разное - одному и тому же и иное - самому предмету (ayte),-то наибольшее доверие внушает мнение тех, кто противопоставляет единое множеству; однако и они делают это неудовлетворительно, ибо у них получится, что единое есть малочисленное: ведь множество противолежит малочисленности, а многое - малочисленному.
А что единое означает меру, это очевидно. И в каждом случае субстрат - особый, например: у гармонии - четверть тона, у [пространственной] величины - дактиль или стопа или что-то в этом роде, в стихотворных размерах - стопа или слог; точно так же у тяжести - определенный вес; и у всего - таким же образом: у качества - нечто обладающее качеством, у количества - нечто количественное; и мера неделима, в одних случаях по виду, в других - для чувственного восприятия, так что единое само по себе не сущность чего-либо.
И это вполне обоснованно, ибо единое означает меру некоторого множества, а число - измеренное множество и меры, взятые много раз (поэтому также правильно сказать, что единое не есть число: ведь и мера - это не множество мер, и мера и единое - начало). И мера всегда должна быть присуща как нечто одно и то же всем предметам [одного вида], например: если мера-лошадь, то она относится к лошадям, а если мера - человек, она относится к людям. А если измеряемое человек, лошадь и бог, то мерой будет, пожалуй, живое существо, и число их будет числом живых существ. Если же измеряемое - человек, бледное и идущее, то меньше всего можно говорить здесь об их числе, потому что бледное и идущее присущи одному и тому же, притом одному по числу; тем не менее число их будет числом родов или числом каких-нибудь других подобных обозначений ..
А те, кто рассматривает неравное как нечто единое и признает двоицу чем-то неопределенным, состоящим из большого и малого, слишком далеко отходят в своих высказываниях от правдоподобного и возможного. Ведь это скорее видоизменения и привходящие свойства чисел и величин, нежели их субстрат (многое и немногое - видоизменения числа, большое и малое - видоизменения величины), так же как четное и нечетное, гладкое и шероховатое, прямое и кривое. А к этой ошибке прибавляется еще и то, что большое и малое и все тому подобное необходимо есть нечто соотнесенное, между тем из всех категорий соотнесенное меньше всего есть нечто самобытное или сущность, и оно нечто последующее по сравнению с качеством и количеством; при этом соотнесенное, как было сказано, есть некоторое видоизменение количества, но не [его] материя, поскольку и для соотнесенного вообще, и для его частей и видов материей будет нечто другое . Ибо не существует ничего большого или малого, многого или немногого, соотнесенного вообще, что было бы многим или немногим, большим или малым, или соотнесенным, не будучи чем-то другим. А что соотнесенное есть меньше всего некоторая сущность и нечто истинно сущее, подтверждается тем, что для него одного нет ни возникновения, ни уничтожения, ни движения в отличие от того, как для количества имеется рост и убыль, для качества - превращение, для пространства - перемещение, для сущности - просто возникновение и уничтожение. Для соотнесенного же всего этого нет, ибо, и не будучи приведенным в движение, одно и то же будет иногда больше [другого], иногда меньше или равно [ему] в зависимости от количественного изменения этого другого. Да и необходимо, чтобы материей чего бы то ни было, значит и сущности, было то, что таково в возможности ; соотнесенное же не есть сущность ни в возможности, ни в действительности. Поэтому нелепо, а скорее невозможно, считать, что не-сущность есть элемент сущности и первее ее, ибо все [остальные] категории суть нечто последующее по отношению к сущности.
Далее, элементы не сказываются о том, элементы чего они есть , между тем многое и немногое порознь и вместе сказываются о числе, длинное и короткое - о линии, а плоскость может быть и широкой и узкой. Если же существует также некое множество, о котором всегда говорится, что оно немногое, например два (ведь если два-многое, то одно было бы немногим ), то должно существовать и безусловно многое, как, например, десятка есть многое, а именно если нет числа больше ее, или десять тысяч . Как же в таком случае получится число из немногого и многого? Ведь о нем должны были бы