Аристотель

Метафизика

это было бы каким-то образом допустимо, то единицы во всяком случае величины не имеют; а с другой стороны, как возможно, чтобы [пространственная] величина была составлена из неделимого? Ведь во всяком случае арифметическое число состоит из отвлеченных единиц; между тем они говорят, что вещи суть числа; ведь свои-то положения они применяют к телам, как будто тела состоят из этих чисел..

Если поэтому необходимо, чтобы число (при условии, что оно действительно есть нечто само по себе существующее) существовало одним из указанных способов, а между тем ни одним из них оно существовать не может, то очевидно, что природа числа совсем не такая, какую придумывают те, кто считает его существующим отдельно..

Далее, получается ли каждая единица из большого и малого по уравнении их или же одна из малого, другая из большого? Если последним способом, то ни одно [число] не получается из всех элементов и единицы не неразличимы (ведь в одной имеется большое, в другой - малое, а большое и малое по своей природе друг другу противоположны); кроме того, как обстоит дело с единицами в самой-по-себе-тройке? Ведь одна из них нечетная . Но может быть, из-за этого они са-мо-по-себе-единое считают средним в нечетном числе? Если же каждая из двух единиц получается из обоих элементов по уравнении их, то как может двойка получаться из большого и малого, будучи чем-то единым и самосущим? Иначе говоря, чем она будет отличаться от единицы ? Далее, единица первее двойки (ведь с ее упразднением двойка упраздняется); стало быть, необходимо, чтобы она была идеей идеи (поскольку она во всяком случае первее идеи) и чтобы она возникла раньше. Так откуда же она возникла? Ведь неопределенная двоица, [по их мнению], есть [лишь] удвоительница..

Далее, число необходимо должно быть либо беспредельным, либо ограниченным: ведь они считают число существующим отдельно, так что невозможно, чтобы ни один из этих двух [способов бытия] не имел места. Что оно не может быть беспредельным, это ясно. Ведь беспредельное число не есть ни нечетное, ни четное, между тем образование чисел есть всегда образование либо нечетного числа, либо четного: одним способом возникает нечетное, когда к четному прибавляется одно, другим - четное, когда, начиная с умножения единицы на двойку, возникает число удвоением , а третьим - другого рода четное число при умножении на нечетные числа. Далее, если всякая идея есть идея чего-то, а числа суть идеи, то и беспредельное число будет идеей чего-то - либо чувственно воспринимаемого, либо чего-то другого; между тем это невозможно ни согласно тому, что они утверждают , ни согласно разуму, если определять идеи так, как они это делают..

Если же число ограниченно, то до какого количества? Здесь надо сказать не только что это так (hoti), но и почему это так (dioti). Однако если число, как утверждают некоторые, доходит лишь до десяти, то эйдосы, во-первых, быстро будут исчерпаны; например, если тройка есть сам-по-себе-человек, то каким числом будет сама-по-себе-лошадь? Ведь только до десяти каждое число есть само-по-себе-сущее. Значит, необходимо, чтобы число, [представляющее собой самое-по-себе-лошадь], было каким-нибудь из этих чисел (ведь [лишь] они сущности и идеи). Но все же их будет недоставать, ибо уже видов животных больше [десяти]. В то же время ясно, что если таким образом тройка есть сам-по-себе-человек, то и каждая другая тройка - тоже (ведь тройки, которые входят в одни и те же числа, подобны друг другу); так что будет бесчисленное количество людей: если каждая тройка - идея, то каждый человек есть сам-по-себе-[человек], а если нет, то во всяком случае это будут люди. Точно так же если меньшее число есть часть большего и состоит из сопоставимых друг с другом единиц, содержащихся в том же числе, то если сама-по-себе-четверка есть идея чего-то, например лошади или белого цвета, человек будет частью лошади, в случае если человек-двойка.

Нелепо и то, что идея десятки есть, а идеи одиннадцати нет, так же как и идей последующих чисел. . Далее, нелепо, что число берется лишь до десяти: ведь [единое] в большей мере сущее и есть эйдос самой десятки; между тем единое как единое не подвержено возникновению, а десятка подвержена. И однако же они стараются убедить, будто [каждое] число до десяти совершенно.

По крайней мере производное - такое, как пустота, соразмерность, нечетное и тому подобное,- они считают порождениями в пределах десятки. Одно они возводят к [первым] началам, например движение и покой, благо и зло , а другое-к числам. Поэтому единое [у них]