парадигмы даже в рамках самого естествознания.
В возникших спорах приняли участие почти все выдающиеся физики нашего времени (кроме позитивистски настроенных исследователей, вообще не склонных обсуждать мировоззренческие вопросы как ненаучные ). По-видимому, спор далеко не завершен (хотя в книгах гуманитарной направленности изложение каких-то конкретных точек зрения по этому вопросу зачастую предваряется словами Современная физика установила, что... ). Здесь мы изложим некоторые проблемы, возникшие в связи с развитием квантовой механики и заставившие физиков, впервые в истории своей науки, обсуждать ее по-настоящему глубокие основы.
Ранний период развития квантовой физики (1900-1924) характеризуется прежде всего формулировкой законов излучения в идеальной модели абсолютно черного (т.е. не отражающего) тела и введением кванта действия (М. Планк, 1900), открытием световых квантов и корпускулярно-волнового дуализма (двойственной природы) света (А. Эйнштейн, 1905 и последующие работы), затем построением модели атома Бора (Н. Бор, 1913) и гипотезой Луи де Бройля о волновых свойствах электрона (1924). Ключевым моментом здесь является осознание корпускулярно-волнового дуализма как универсального свойства материи. Второй этап, начавшийся с 1925 года, характеризуется построением формальной теории, описывающей этот дуализм (В. Гейзенберг, М. Борн, П. Иордан, Э. Шредингер, П. Дирак, В. Паули, 1925-1927; Дж. фон Нейман, 1932; Р. Фейнман, 1946, и другие исследователи) и глубоким обдумыванием возникших в связи с этим концептуальных проблем ( принцип неопределенности Гейзенберга, статистическая интерпретация волновой функции Борна, принцип дополнительности Бора, и др.). Существуют хорошие популярные изложения физической сути корпускулярно-волнового дуализма (см., например, прекрасные книги Р. Фейнмана Характер физических законов и КЭД: странная теория света и вещества ), к которым мы и отсылаем читателя. Здесь мы лишь приведем без обоснования ряд относящихся к делу фундаментальных физических фактов.
Во многих физических экспериментах свет ведет себя как волна, демонстрируя типичные проявления интерференции и дифракции . Примером интерференции могут служить цвета тонких пленок - скажем, радужные цвета бензиновой пленки на поверхности воды, переливающиеся и изменяющиеся при изменении угла зрения. Дифракция - это, в частности, отклонение света от прямолинейного распространения при прохождении его через маленькие отверстия, известное с XVII в. В то же время, в ряде других явлений (например, фотоэффект - выбивание светом электронов из металла) свет ведет себя как пучок частиц - световых квантов, или фотонов. Зернистое , то есть дискретное, строение света в определенных условиях буквально видимо невооруженным глазом (опыты С. И. Вавилова, см. его популярную книгу Глаз и Солнце , М., Наука, 1981). Такое же двусмысленное поведение - иногда волновое, иногда корпускулярное - присуще и другим микрообъектам, например, электронам, нейтронам и т.д. Скажем, при регистрации электрона любыми счетчиками он ведет себя как частица (всегда регистрируется целый электрон и никогда - его часть), но при отражении электронного пучка от поверхности кристалла наблюдаются типично волновые явления, подобные происходящим при отражении света от так называемой дифракционной решетки.
Математическое описание такой ситуации возможно различными способами, из которых по-видимому самым глубоким является фейнмановский формализм интегрирования по траекториям . Утверждается, что электрон представляет собой частицу, т.е. неделимый объект, проявляющийся всегда только как целое и характеризуемый вполне определенными значениями электрического заряда, момента вращения (спина), массы и т.д. Однако под действием заданных внешних сил он движется не по вполне определенной траектории в соответствии с ньютоновской механикой, а с определенными вероятностями по всем траекториям сразу. Все, что мы можем найти - это вероятность его нахождения в данной точке в данный момент времени. При этом интерференционные (волновые) явления обусловлены тем, что эта вероятность не равна сумме вероятностей движения по каждой траектории: складываются не вероятности, а комплексные числа, называемые амплитудами вероятности; суммарная вероятность есть квадрат модуля суммарной амплитуды. При этом бессмысленно говорить о значении скорости электрона в данной точке пространства, поскольку он движется одновременно во многих (и даже в бесконечно большом числе) направлений. Типичная траектория