координаты. Формально эти четыре координаты соответствуют пространственным координатам евклидовой геометрии'.
Формула q - 1 ct означает, что время любого события берЈтся не само по себе, а как мнимая величина по отношению к скорости света, т.е. что в предполагаемое 'метагеометрическое' выражение вводится чисто физическое понятие.
Длительность времени t умножается на скорость света c и на квадратный корень из минус единицы q - 1, который, не меняя величины, делает еЈ мнимой.
Это вполне ясно. Но в связи с цитированным выше отрывком необходимо отметить, что Эйнштейн рассматривает 'мир' Минковского как развитие теории относительности, тогда как на самом деле, наоборот, специальный принцип относительности построен на теории Минковского. Если предположить, что теория Минковского вытекает из принципа относительности, тогда, как и в случае теории Фицджералда и Лоренца о линейном сокращении движущихся тел, остаЈтся непонятным, на какой основе построен принцип относительности.
Во всяком случае, для построения принципа относительности требуется специально разработанный материал.
В самом начале своей книги Жйнштейн пишет, что для согласования друг с другом некоторых выводов из наблюдений за физическими явлениями необходимо пересмотреть определЈнные геометрические понятия. 'Геометрия', - пишет он, - означает 'землемерие'... Как математика, так и геометрия обязаны своим происхождением потребности узнать нечто о свойствах разных вещей.' На этом основании Эйнштейн считает возможным 'дополнить геометрию', заменив, например, понятие прямых линий понятием жЈстких стержней. ЖЈсткие стержни подвергаются изменениям под влиянием температуры, давления и т.п.; они могут расширяться и сокращаться. ВсЈ это, разумеется, должно значительно изменить 'геометрию'.
Дополненная таким образом геометрия, - пишет Эйнштейн, - очевидно, становится естественной наукой; и еЈ надо считать отраслью физики'.
Я придаю особую важность изложенному здесь взгляду на геометрию, потому что без этого было бы невозможно построить теорию относительности...
Евклидову геометрию необходимо отбросить.'
Следующий важный пункт теории Эйнштейна - оправдание применяемого математического метода.
'Опыт привЈл к убеждению, - говорит он, - что, с одной стороны, принцип относительности (в ограниченном понимании) является правильным, а с другой стороны, скорость распространения света в пустоте следует считать постоянной величиной.'
Согласно Эйнштейну, сочетание этих двух положений обеспечивает закон преобразований для четырЈх координат, определяющих время и место события.
Он пишет:
'Каждый общий закон природы должен быть сформулирован таким образом, чтобы его можно было преобразовать в совершенно одинаковый по форме закон, где вместо пространственно-временных переменных первоначальной системы координат введены пространственно-временные переменные другой системы координат. В этой связи, математические соотношения между величинами первого порядка и величинами второго порядка даются преобразованиями Лоренца. Или кратко: общие законы природы коварианты относительно преобразований Лоренца.'
Утверждение Эйнштейна о ковариантности законов природы относительно преобразований Лоренца - наиболее ясная иллюстрация его позиции. Начиная с этого момента, он полагает возможным приписывать явлениям те же изменения, которые находит в преобразованиях. Это как раз тот самый метод математической физики, который давно уже осуждЈн и который упоминал Хвольсон в цитированном выше отрывке.
В 'Теории относительности' есть глава под названием 'Опыт и специальная теория относительности.'
'В какой мере специальная теория относительности подкрепляется опытом? Нелегко ответить на этот вопрос, - пишет Эйнштейн. - Специальная теория относительности выкристаллизовалась из теории электромагнитных явлений Максвелла-Лоренца. Таким образом, все факты опыта, которые подтверждают электромагнитную теорию, подтверждают также и теорию относительности.'
Эйнштейн с особой остротой чувствует, как необходимы ему факты, чтобы поставить свою теорию на прочную основу. Но факты удаЈтся найти только в области невидимых величин - ионов и электронов.
Он пишет:
'Классической механике необходимо было измениться, прежде чем она смогла стать на один уровень со специальной теорией относительности. Однако в главной своей части эти изменения относятся лишь к законам больших скоростей, когда скорости движения материальных частиц не слишком малы по сравнению со скоростью света. Мы имеем опыт таких скоростей только в случае электронов и ионов, для